What is the fire rating of stainless steel? This is a common enquiry in the construction industry, especially with the current concerns about flammable cladding. The three major branches to this question are addressed in this article.
Image 2. Commercial electrical cable trays. Text & images by the Australian Stainless Steel Development Association (ASSDA)
Will stainless steel burn, and if it does, will it give off fumes or facilitate the spread of fire?
This question is readily answered because it is recognised that steels do not burn and only start to melt at about 1400°C. This means that stainless steels do not have a “fire rating” as such, so the tests of AS/NZS 1530.3 (or the equivalent tests in BS 476) are not required.
Heating in a fire will obviously have a cosmetic effect because, unlike the transparent nanometer-thick passive layer formed in moist air, stainless steels heated above about 300°C in air discolour as they grow a less dense oxide layer. This develops from the rainbow colours seen beside welds to a dark and non-protective oxide layer whose thickness depends on the time of exposure and temperature reached. The street rubbish bin shown in Image 1 suffered from a fire but remained functional for almost a year (until the repair cycle reached it) with a decorative rainbow oxide. By way of comparison, powder-coated bins would suffer from unsightly burn marks and corrosion
For austenitic alloys such as 304 and 316, the temperature limits for lifetime section loss due to oxidation is about 870°C (with temperature cycling) so they are routinely used in hightemperature furnaces and ductwork.
The current trend to apply decorative coatings to stainless steels would require an assessment to determine the combustibility, potential fumes and flame spread of the coating. Tests to AS/NZS 1530.3 would be appropriate.
Microstructural effects of a shortterm heat cycle (less than a couple of hours of exposure, such as a fire) could include carbide precipitation (sensitisation) in an austenitic alloy which was not an L grade (i.e. carbon >0.03%). Duplex and weldable ferritic grades should not have sufficient carbon for sensitisation. Sensitisation would degrade the corrosion resistance but not affect mechanical properties. Both duplex and ferritic grades can suffer 475°C embrittlement; however data produced by the International Molybdenum Association (IMOA) shows that this requires more than two hours in the 400°C to 500°C range for a 50% reduction in toughness. This duration is unlikely in most fires.
Will stainless steel provide a barrier to flames and if it does, how rapidly will the heat penetrate the barrier sufficiently to cause damage (usually a specific temperature rise) on the far side?
A satisfactory demonstration is supplied by reference BS 647 Part 22 tests carried out for a British Stainless Steel Association (BSSA) member, Stewart Fraser. The company manufactures 316 framed doors which include a cavity filled with non-combustible boards. The results are given at www.bssa.org.uk.
It showed slight discolouration and distortion on the flame impingement side with the sheltered side of the door reaching only 98°C after 60 minutes. The test was continued for another 80 minutes without the failure of flame containment or subsequent opening of the door in its frame. Similar testing was carried out on a 1.5mm thick 2304 duplex sheet fabricated into a simulated ship’s bulkhead with enclosed ceramic wool insulation. With a bright orange glow of an 1100°C metal temperature on the flame side, the “safe” side reached 30°C after 40 minutes and 110°C after 60 minutes. The test was terminated after 120 minutes with containment still satisfying IMO resolution A518 (XIII).
What are the effects (both during and after an event) to the mechanical properties of stainless steel? How do these compare with structural carbon steels?
There are tests as well as a theoretical basis which demonstrate that both austenitic and duplex stainless steels have superior high-temperature properties compared to carbon steel.
Table 1 shows the deflection and failure modes of three-metre long commercial electrical cable trays loaded to simulate actual loadings (Image 2). They were heated with 18 LPG burners to obtain an average temperature of 1000°C to 1050°C for at least five minutes (Nickel Institute publication No. 10042). The publication also considers the life cycle costs (LCC) of the use of aluminium, galvanised steel or stainless steel for stairways, handrails, gratings and firewalls, as well as cladding for corridors and accommodation modules on North Sea platforms. Fire risk controls are obviously a major concern, although corrosion resistance is also critical. On an LCC basis, stainless steel was most economical especially when its reduced requirement for maintenance periods were included.
In addition to the above testing in cable tray applications, substantial research and application work has since been carried out and codified. Installations include 2205 duplex hangers suspending the slab which forms the floor of the emergency ventilation duct in the CLEM7 tunnel in Brisbane [ISSF], see Image 3.
In short term fires such as on balconies or stairways, the temperature rise exposed to an ISO 834 fire temperature profile depends on thickness and emissivity. Polished stainless steels typically have low emissivity of <0.1 and hence a slower temperature rise.
Conservatively, after 30 minutes a 12mm sheet of stainless steel with 0.2 emissivity would reach 620C whereas steel (with no rust) and 0.4 emissivity would reach 750°C.
When considering strength and deflection, the metal temperatures in a conventional fire do not reach levels to anneal the material so any cold work strengthening will raise the temperature for a 50% strength reduction. In addition, as shown in the graph, the reduction in Young’s Modulus, i.e. deflection from a specific load, is less than that of carbon steel for temperatures above ~200°C. By 600°C the modulus retention for stainless steel is 0.75 compared to 0.3 for carbon steel, i.e. less than half the deflection for a given load.
In summary, stainless steel has substantial advantages in structural use when fire risk is considered, and these advantages continue into higher strength and lower deflections at elevated temperatures.
Table 1. Deflection & failure modes of 3m cable trays
Material
Result
Comment
316L stainless steel
Maintained integrity for five minutes. Burners continued until gas exhausted after 45 minutes. Centre sag 80.5mm – see picture.
Maximum average ladder temperature 707°C with max. Individual 757°C.
Galvanised carbon steel
Maintained integrity for five minutes. Centre sag 166.5mm.
Molten zinc dripped. Maximum average ladder temperature 642°C.
Aluminium
Collapsed after 26 seconds.
Fell outside monitoring zone so no temperatures measured.
Stainless Steel World uses Functional, Analytical and Tracking cookies
We use cookies on our website to ensure that your visit to our website is as smooth, reliable, and useful as possible by remembering your preferences within the website. By clicking “Accept All Cookies”, you consent to our use of all cookies. You can change your preferences via the "Cookie Settings" button. Read our privacy policy and cookie policy for more information.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
Cookie
Type
Duration
Description
_ga
1 year 1 month 4 days
Google Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors.
_ga_*
1 year 1 month 4 days
Google Analytics sets this cookie to store and count page views.
_gcl_au
3 months
Google Tag Manager sets the cookie to experiment advertisement efficiency of websites using their services.
advanced_ads_visitor
1 month
Description is currently not available.
AnalyticsSyncHistory
1 month
Linkedin set this cookie to store information about the time a sync took place with the lms_analytics cookie.
bcookie
1 year
LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognize browser IDs.
bscookie
1 year
LinkedIn sets this cookie to store performed actions on the website.
cookielawinfo-checkbox-advertisement
1 year
Set by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Advertisement" category.
cookielawinfo-checkbox-analytics
1 year
Set by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Analytics" category.
cookielawinfo-checkbox-functional
1 year
The GDPR Cookie Consent plugin sets the cookie to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
1 year
Set by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Necessary" category.
cookielawinfo-checkbox-non-necessary
1 year
GDPR Cookie Consent plugin sets this cookie to record the user consent for the cookies in the "Necessary" category.
cookielawinfo-checkbox-others
1 year
Set by the GDPR Cookie Consent plugin, this cookie stores user consent for cookies in the category "Others".
cookielawinfo-checkbox-performance
1 year
Set by the GDPR Cookie Consent plugin, this cookie stores the user consent for cookies in the category "Performance".
CookieLawInfoConsent
1 year
CookieYes sets this cookie to record the default button state of the corresponding category and the status of CCPA. It works only in coordination with the primary cookie.
cookietest
session
Description is currently not available.
ga_session_duration
1 hour
Description is currently not available.
itsec-hb-login-42edbd1a8433064590f0277615ec808a
1 hour
Description is currently not available.
li_gc
6 months
Linkedin set this cookie for storing visitor's consent regarding using cookies for non-essential purposes.
li_sugr
3 months
LinkedIn sets this cookie to collect user behaviour data to optimise the website and make advertisements on the website more relevant.
lidc
1 day
LinkedIn sets the lidc cookie to facilitate data center selection.
sabai_directory_view
session
No description available.
test_cookie
15 minutes
doubleclick.net sets this cookie to determine if the user's browser supports cookies.
UserMatchHistory
1 month
LinkedIn sets this cookie for LinkedIn Ads ID syncing.
wordpress_test_cookie
session
WordPress sets this cookie to determine whether cookies are enabled on the users' browsers.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Cookie
Duration
Description
li_gc
6 months
Linkedin set this cookie for storing visitor's consent regarding using cookies for non-essential purposes.
lidc
1 day
LinkedIn sets the lidc cookie to facilitate data center selection.
UserMatchHistory
1 month
LinkedIn sets this cookie for LinkedIn Ads ID syncing.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
_ga
1 year 1 month 4 days
Google Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors.
_ga_*
1 year 1 month 4 days
Google Analytics sets this cookie to store and count page views.
_gcl_au
3 months
Google Tag Manager sets the cookie to experiment advertisement efficiency of websites using their services.
AnalyticsSyncHistory
1 month
Linkedin set this cookie to store information about the time a sync took place with the lms_analytics cookie.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
bcookie
1 year
LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognize browser IDs.
bscookie
1 year
LinkedIn sets this cookie to store performed actions on the website.
li_sugr
3 months
LinkedIn sets this cookie to collect user behaviour data to optimise the website and make advertisements on the website more relevant.
test_cookie
15 minutes
doubleclick.net sets this cookie to determine if the user's browser supports cookies.